Chemical stimulation of cardiac receptors attenuates locomotion in mesencephalic cats.
نویسنده
چکیده
The purpose of the present investigation was to determine whether chemical stimulation of cardiac receptors is sufficient to inhibit locomotion. Decerebrate, unanesthetized cats were induced to walk on a treadmill by electrically stimulating the mesencephalic locomotor region (MLR). Cardiac receptors were stimulated by injecting nicotine (62.3 +/- 8.6 microg/kg, mean +/- SE) into the pericardial sac. Cardiac nerve activity was reversibly blocked by injecting procaine (2%) into the pericardial sac. Locomotion was monitored by using bipolar needle electrodes inserted into the lateral gastrocnemius (LG) and tibialis anterior (TA) muscles. Integrated electromyographic (iEMG) activity from each muscle was quantified on a step-by-step basis. Intrapericardial (ipc) nicotine inhibited locomotion and evoked the coronary chemoreflex. Blood pressure and heart rate decreased significantly by 45.6 +/- 7.1 mmHg and 59.3 +/- 12.3 beats/min, respectively. Nicotine ipc significantly reduced iEMG activity by 24-28% in the LG muscles. The TA muscles were not affected consistently by ipc nicotine. The locomotor inhibition and the depressor reflex paralleled each other and occurred within 5 s of nicotine injection. Procaine ipc blocked the nicotine-induced locomotor inhibition and depressor reflex. The effects of procaine were largely reversible, because ipc nicotine reduced iEMG activity in the LG (25-46%) but not in the TA muscles after washing procaine from the pericardial sac. These results demonstrate that cardiac receptors sensitive to nicotine inhibit MLR-induced locomotion in the decerebrate cat. These findings indicate the presence of a neural pathway from the heart whereby endogenous stimuli could reflexly alter motor control.
منابع مشابه
Anatomical Location of the Mesencephalic Locomotor Region and Its Possible Role in Locomotion, Posture, Cataplexy, and Parkinsonism
The mesencephalic (or midbrain) locomotor region (MLR) was first described in 1966 by Shik and colleagues, who demonstrated that electrical stimulation of this region induced locomotion in decerebrate (intercollicular transection) cats. The pedunculopontine tegmental nucleus (PPT) cholinergic neurons and midbrain extrapyramidal area (MEA) have been suggested to form the neuroanatomical basis fo...
متن کاملEffect on airway caliber of stimulation of the hypothalamic locomotor region.
Airway dilation is one of the many autonomic responses to exercise. Two neural mechanisms are believed to evoke these responses: central command and the muscle reflex. Previously, we found that activation of central command, evoked by electrical and chemical stimulation of the mesencephalic locomotor region, constricted the airways rather than dilated them. In the present study we examined in d...
متن کاملTonic presynaptic reduction of monosynaptic Ia EPSPs during fictive locomotion.
The phasic modulation of the H-reflex during human locomotion (1) and the rhythmic fluctuations of intra-axonally recorded primary afferent depolarizations (2) during fictive locomotion in cats suggest a cyclic presynaptic inhibition of group Ia afferents and hence a modulation of synaptic efficacy during locomotion. In the present study the amplitudes of Ia monosynaptic EPSPs were measured in ...
متن کاملGABAergic receptors in rostral ventrolateral medulla mediates the cardiovascular responses to activation of bed nucleus of the stria terminalis in the female rat
The bed nucleus of the stria terminalis (BST) is known to contain estrogen (E)- concentrating neurons. In addition, injections of E into BST have been reported to potentiate the sympathoinhibitory arterial pressure (AP) and heart rate (HR) responses elicited by glutamate (Glu) stimulation. In this study, the effect of GABA-A antagonist receptors, bicuculline methiodide (BMI), in the rostral ven...
متن کاملGABAergic receptors in rostral ventrolateral medulla mediates the cardiovascular responses to activation of bed nucleus of the stria terminalis in the female rat
The bed nucleus of the stria terminalis (BST) is known to contain estrogen (E)- concentrating neurons. In addition, injections of E into BST have been reported to potentiate the sympathoinhibitory arterial pressure (AP) and heart rate (HR) responses elicited by glutamate (Glu) stimulation. In this study, the effect of GABA-A antagonist receptors, bicuculline methiodide (BMI), in the rostral ven...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 83 1 شماره
صفحات -
تاریخ انتشار 1997